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a b s t r a c t

We analyse the time-series evolution of the cumulative number of confirmed cases
of COVID-19, the novel coronavirus disease, for some African countries. We propose
a mathematical model, incorporating non-pharmaceutical interventions to unravel the
disease transmission dynamics. Analysis of the stability of the model’s steady states
was carried out, and the reproduction number R0, a vital key for flattening the time-
evolution of COVID-19 cases, was obtained by means of the next generation matrix
technique. By dividing the time evolution of the pandemic for the cumulative number
of confirmed infected cases into different regimes or intervals, hereafter referred to
as phases, numerical simulations were performed to fit the proposed model to the
cumulative number of confirmed infections for different phases of COVID-19 during its
first wave. The estimated R0 declined from 2.452–9.179 during the first phase of the
infection to 1.374–2.417 in the last phase. Using the Atangana–Baleanu fractional deriva-
tive, a fractional COVID-19 model is proposed and numerical simulations performed
to establish the dependence of the disease dynamics on the order of the fractional
derivatives. An elasticity and sensitivity analysis of R0 was carried out to determine
the most significant parameters for combating the disease outbreak. These were found
to be the effective disease transmission rate, the disease diagnosis or case detection rate,
the proportion of susceptible individuals taking precautions, and the disease infection
rate. Our results show that if the disease infection rate is less than 0.082/day, then
R0 is always less than 1; and if at least 55.29% of the susceptible population take
precautions such as regular hand washing with soap, use of sanitizers, and the wearing
of face masks, then the reproduction number R0 remains below unity irrespective of the
disease infection rate. Keeping R0 values below unity leads to a decrease in COVID-19
prevalence.
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1. Introduction

Towards the end of December 2019, the infectious Coronavirus disease known as COVID-19 was first detected in
uhan, the capital city of the Hubei province in China. Caused by the severe acute respiratory syndrome coronavirus

ARS-CoV-2 [1], COVID-19 has caused a global health emergency. The World Health Organization (WHO) declared it to be
public health emergency of international concern on 30 January 2020 [2], and as a pandemic on 11 March 2020 [3]. By
5 June 2020, the outbreak had infected around 7.8 million people globally with total fatalities of around 430,000 people.
ollowing Africa’s first case recorded in Egypt on 14 February 2020, there had been over 246,636 confirmed cases with over
571 deaths by 16 June 2020. COVID-19 is a rapidly spreading contagious zoonotic disease with symptoms that manifest
fter an incubation period of approximately 5 days following infection. Symptoms are highly variable, but range from fever,
ry cough, and fatigue to less common ones like aches, sore throat, conjunctivitis, diarrhoea, and loss of smell and taste.
ecause efficient vaccination is not yet widely available, and there are few validated medications for treatment, COVID-19
ontrol strategies employed by government agencies are still largely dominated by non-pharmaceutical interventions such
s social distancing, wearing of face masks, regular washing of hands with soap, and use of hand sanitizer. However, the
fficacy of these control strategies are not yet well-quantified, and their effectiveness is likely to change as new COVID-19
utants take the stage.
Infectious disease modelling is a very active scientific research field. The activity is motivated, in part, by the need to

ain deeper insight into disease dynamics in order to predict the trend of an epidemic outbreak, through being able to
alidate and test the effectiveness of control measures proposed to check the spread of the disease [4]. In recent years,
athematical modelling has been playing a key role in understanding the dynamics of infectious diseases and their control
easures. It has recently been applied to study, for example Ebola [5–9], Dengue fever [10–14], Zika virus [15–20], and
uberculosis [21–24]. Research on comprehending and predicting the trend of COVID-19 has been focused mainly on
urope [25–30], Asia [31–37], and the Americas [38,39] due partly to the degree of spread and impact on these continents.
owever, a few research papers have appeared on cases in Africa, and in Nigeria in particular [40–43], while earlier, Gilbert
t al. [44] evaluated the vulnerability and preparedness of the African continent against the risk of importing the disease.
he importance of investigating the dynamics of COVID-19 in Africa can hardly be overemphasized, not only for the sake of
frica itself, but also because the people of the African continent are constantly visiting or migrating to other continents in
he pursuit of further education, business, or other bilateral purposes; thereby creating a high risk of spreading the disease,
s already witnessed and reported. Moreover, the investigation of COVID-19 dynamics will provide reliable information
o decision-makers on the implementation of possible strategies and control measures aimed at stemming the spread of
he pandemic [42,43]. Recently, Manchein et al. [45] analysed the growth of the cumulative number of confirmed infected
ases of COVID-19 up to March 27, 2020, from countries of Asia, Europe, North America, and South America using the
ower-law: α + βtµ, where α is a deviation accounting for the uncertainty in the observed values. They found values of
, β and µ for nine countries of Asia, Europe, North America, and South America and employed a distance correlation to

show that the power-law curves between the countries are statistically highly correlated [45]; but African countries were
not considered.

Inspired by the work of Manchein et al. [45], this present paper analyses the time-series evolution of COVID-19 for
6 African countries: Egypt, Ethiopia, Kenya, Nigeria, Senegal and South Africa. A modified SEIR model with integer order
derivatives is proposed, incorporating some non-pharmaceutical interventions, to estimate the reproduction number of
the infection in the various countries, and also to highlight the effectiveness of the interventions in flattening the time-
evolution of new COVID-19 cases. In addition, a fractional order equivalent is considered using the Atangana–Baleanu
derivative [46]. This derivative is to be preferred over other fractional derivatives, such as the Caputo and Caputo–Fabrizio,
because of its non-singular and non-local kernel. It has already found numerous applications in diverse models arising in
science, engineering and medicine [47–58].

The paper is organized as follows: in Section 2, we carry out an analysis of data collected for the countries to be
studied. In Section 3, the model and its basic dynamical properties are presented. Section 4 provides a qualitative analysis
of the model, including a determination of the stability properties of the equilibrium points based on the next generation
matrix method [59,60] employed in obtaining the reproduction number. Numerical simulations, elasticity and sensitivity
analysis, and fractional numerical simulations, are presented in Sections 5–7, respectively. The work is summarized and
conclusions drawn in Section 8. Appendix providing details of the numerical scheme used for solution of the fractional
derivative model.

2. Data analysis

The data for the countries to be analysed were collected from the daily situation reports published by the World Health
Organization (WHO) [61]. The choice of countries to be analysed was made so as to ensure geographical spread, as well
as relatively high population densities. Nigeria and Senegal were chosen in the West Africa zone, Ethiopia and Kenya
in East Africa, Egypt in North Africa and South Africa in Southern Africa (Fig. 1). Fig. 2 shows the cumulative number
of confirmed infected COVID-19 cases as a function of days since first case was recorded up till 20th June 2020 for the
selected countries. Note that the values on the horizontal and vertical axes are different for each country due to the

different levels of disease progression and different inception dates. The black-continuous and the blue-dashed curves
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Fig. 1. Map of Africa showing the locations of the countries studied and the corresponding numbers of confirmed cases (NOC) and numbers of
eaths (NOD) due to COVID-19 [61].

n Fig. 2 represent respectively the cubic function, α0 + α1t + α2t2 + α3t3 and the power law function, β1tβ2 that was
itted to the time-series. Numerical values of the fitted parameters αi, βi, i = 1, 2, 3 for the cubic and power law equation
for each country are given in Table 1. It is clear that the cubic equation fits best to the actual data for the cumulative
number of confirmed cases in comparison with the power law equation of Manchein et al. [45]. However, the results of
the cubic and power law fitting were comparable during the early stages of disease progression for all the countries. It
is noteworthy that the fitted cubic equation for each country is such that there exists no maximum point for the curve
beyond t > 25 days. Such a maximum point would correspond to a time when a maximum in the cumulative number of
infections is being approached so that the curve begins to flatten. The fact that no maximum value is approached reduces
the usefulness of the cubic equation for investigating future dynamics of the pandemic and possible actions needed to
flatten the curve of disease progression. Nevertheless, it can be adopted as a tool for forecasting the expected number of
new infections.

The cubic equation was used to predict the expected cumulative number of confirmed infected cases from June 21 to
June 30 with Root Mean Square Error (RMSE) and Mean Percentage Error (MPE) used as performance indicators for the
prediction (Table 2):

RMSE =

[
1
n

n∑
(Est. − Obs.)2

]1/2

,

1

3
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Fig. 2. Cumulative number of confirmed infected cases by COVID-19 as a function of time from inception (first case) for South Africa, Egypt, Nigeria,
Senegal, Ethiopia and Kenya. The black-continuous and the blue-dashed curves represent respectively the functions α0 +α1t +α2t2 +α3t3 and β1tβ2

that fit the actual time-series represented by the red dots. The parameters αi , βi , i = 1, 2, 3 for each country are described in Table 1.

MPE =
1
n

n∑
1

(
Est. − Obs.

Obs.
× 100

)2

,

where Obs. and Est . are, respectively, the observed and estimated values of the cumulative number of confirmed infected
cases and n is the number of observations used. In general, the lower the RMSE and MPE, the better the model. A positive
MPE value indicates overestimation in calculated values, while a negative MPE value indicate underestimation. From
Table 2, we observe that the lowest and highest RMSE were obtained for Ethiopia and South Africa respectively and the
MPEs obtained were of magnitude between 1.022%–4.290% of the actual cumulative number of confirmed infected cases.

. Model formulation

Here, we propose a new epidemiological model for the COVID-19 epidemic. The proposed model is an extended
orm of the well-known Susceptible Exposed Infected Recovered (SEIR) compartmental model that takes into account
ome features such as quarantine, isolation and asymptomatic infections, commonly employed in epidemiological
tudies of communicable diseases such as, Ebola, Zika, COVID-19, etc [62–64]. An asymptomatic transmission refers to
4
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Table 1
Parameters of the cubic and power-law fitting curves.
Country α0 α1 α2 α3 β1 β2

South Africa −4223.492 671.706 −21.445 0.214 0.072 2.875
Egypt −1911.406 258.244 −7.608 0.070 0.001 3.522
Nigeria 186.931 −14.660 −0.324 0.017 0.002 3.260
Senegal 226.162 −28.806 0.739 −0.000196 0.062 2.365
Ethiopia −299.237 51.666 −1.771 0.017 0.092 2.046
Kenya −155.907 28.809 −0.903 0.011 0.133 2.142

Table 2
Performance indicator for the cubic equation.
South Africa Egypt Nigeria

RMSE MPE % RMSE MPE % RMSE MPE %

6488.75 −3.005 2616.93 2.716 335.16 1.022

Senegal Ethiopia Kenya

RMSE MPE % RMSE MPE % RMSE MPE %

279.72 3.047 276.00 2.806 324.42 4.290

transmission of the virus through a person, who does not develop any symptoms despite having been infected. The model
contains seven epidemiological compartments namely: Susceptible S(t), Exposed E(t), Infected I(t), Asymptomatic IA(t),
uarantined Q (t), Hospitalized H(t) and Recovered R(t). The complete flow chart of the interactions between different

classes of the proposed model is shown in Fig. 3. The susceptible population S(t) represents the totality of the entire
opulation that is at risk of being infected with the virus. This population is assumed to be increasing at a constant rate
. The increase is not a net increase because µ is the natural death rate common to all the classes of the population.
xposure and transmission of the virus to the susceptible population involves the action of individuals in the infected
lass I(t) and the asymptomatic class IA(t). We assume that the infected class consists of people that develop symptoms
hile the asymptomatic class IA(t) involves people that are without symptoms and therefore unaware of their positive
OVID-19 status. β denotes the rate of disease transmission with α representing a measure of the relative (reduced)
ffectiveness of individuals in the asymptomatic class as disease spreaders. The spread of the disease to the susceptible
opulation can be controlled by several precautionary measures such as use of soap and sanitizers, lockdown, social
istancing and use of face masks and other Personal Protective Equipment (PPE). We assume that h (0 < h < 1) represents
he portion of the population that maintains these precautions with the disease only transmitted to (1 − h) portion of
he susceptible population. θ is the infection rate for the model with pθ and (1 − p)θ the portions of the exposed class
(t) that go into the infected class I(t) and asymptomatic class IA(t), respectively. The quarantine class Q (t) involves the
uarantining of exposed individuals usually through contact tracing, at a rate η1 and people who develop symptoms in
uarantine are also hospitalized at a rate ρ1. As the current procedure in most African countries is to limit testing mostly
o people who develop COVID-19 symptoms, we assume that the infectious and symptomatic class I(t) are tested at a
ate η2 (diagnosis or detection rate of infected symptomatic individuals) and moved into the hospitalized class H(t). Also,
uarantined individuals who develop symptoms are moved to the hospitalized class H(t) at a rate ρ1 while those who do
ot develop symptoms after 1/ρ2 days are back into the susceptible population. Let δ1 and δ2 be respectively, the recovery
ate of the isolated/hospitalized infected population H(t) and untreated asymptomatic population IA(t) into the recovered
opulation R(t). γ1 and γ2 denote the COVID-19 induced death from the hospitalized and asymptomatic class, respectively
ith γ2 usually very small compared to γ1. µ is the natural death rate common to all the classes of the population. We
ssume, based on current scientific evidence, that the COVID-19 deceased are not infectious, and that individuals develop
ntibodies and become immune to the disease once they are recovered.
On the basis of the above assumptions, the nonlinear system of differential equations describing the COVID-19 model

sed to analysed data from African countries can be written mathematically as:
dS
dt

= Ω − β(1 − h)SI − αβ(1 − h)SIA + ρ2Q − µS

= f1(S, E, I, IA,Q ,H, R),
dE
dt

= β(1 − h)SI + αβ(1 − h)SIA − θE − η1E − µE

= f2(S, E, I, IA,Q ,H, R),
dI
dt

= pθE − η2I − µI = f3(S, E, I, IA,Q ,H, R)

dIA
dt

= (1 − p)θE − δ2IA − γ2IA − µIA

= f (S, E, I, I ,Q ,H, R),
4 A
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Fig. 3. Flowchart of the COVID-19 Africa model (1).

Table 3
Description and unit of model parameters.
Parameter Description Unit

Ω Constant population growth rate Persons day−1

µ Natural population death rate day−1

β Effective disease transmission rate Persons−1 day−1

α Relative infectiousness of class IA with respect to I dimensionless
h Portion of S(t) taking precautionary measures dimensionless
θ Infection rate (1/Incubation Period) day−1

p Proportion of symptomatic infections dimensionless
η1 Quarantine rate of exposed individuals day−1

η2 Diagnosis or case detection rate day−1

δ1 Recovery rate of isolated/hospitalized individuals day−1

δ2 Recovery rate of the untreated asymptomatic day−1

ρ1 Isolation rate of individuals from class Q to class H day−1

ρ2 Transition rate from class Q to class S day−1

γ1 , γ2 COVID-19 death rate day−1

dQ
dt

= η1E − ρ1Q − ρ2Q − µQ = f5(S, E, I, IA,Q ,H, R),

dH
dt

= η2I − δ1H − γ1H + ρ1Q − µH

= f6(S, E, I, IA,Q ,H, R),
dR
dt

= δ1H + δ2IA − µR = f7(S, E, I, IA,Q ,H, R), (1)

with the initial conditions S(0) > 0, E(0) ≥ 0, I(0) > 0, IA(0) ≥ 0, Q (0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0. At every instant

of time, the quantity D(t) = γ1H(t) + γ2IA(t) represents the number of deaths caused by the disease at time t while

C(t) = η2I(t)+ ρ1Q (t)+ δ1H(t) represents the total number of confirmed COVID-19 cases at time t . Furthermore, let the

total size of the population be N(t) = S(t)+E(t)+ I(t)+ IA(t)+Q (t)+H(t)+R(t). Definitions of the model parameters (1)

are presented in Table 3.
6
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4. Qualitative analysis of the system

4.1. Positivity of the solutions

Theorem 1. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, IA(0) ≥ 0, Q (0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0, then the solutions of system (1);
(t), E(t), I(t), IA(t), Q (t), H(t) and R(t) are positive for all t > 0.

roof. From the first equation of system (1), we have
dS
dt

= Ω + ρ2Q (t) − S(t) [β(1 − h)I(t) + αβ(1 − h)IA(t) + µ]

= Ω + ρ2Q (t) − P1(t)S(t), (2)

where P1(t) = β(1 − h)I(t) + αβ(1 − h)IA(t) + µ. From Eq. (2), we have
dS
dt

e
∫ t
0 P1(τ )dτ + P1(t)S(t)e

∫ t
0 P1(τ )dτ = [Ω + ρ2Q (t)] e

∫ t
0 P1(τ )dτ ,

d
dt

(
S(t)e

∫ t
0 P1(τ )dτ

)
= [Ω + ρ2Q (t)] e

∫ t
0 P1(τ )dτ ,

S(t)e
∫ t
0 P1(τ )dτ − S(0) =

∫ t

0
[Ω + ρ2Q (t)] e

∫ t
0 P1(τ )dτdt,

S(t) = S(0)e−
∫ t
0 P1(τ )dτ + e−

∫ t
0 P1(τ )dτ

∫ t

0
[Ω + ρ2Q (t)] e

∫ t
0 P1(τ )dτdt ≥ 0. (3)

Eq. (3) means that the solution of system (1) for S(t) is positive. Similar expression for E(t), I(t), IA(t), Q (t), H(t) and R(t)
can be obtained from system (1) as

E(t) = E(0)e−P2t + e−P2tβ(1 − h)
∫ t

0
[S(t)I(t) + αS(t)IA(t)] eP2tdt ≥ 0, (4)

I(t) = I(0)e−(µ+η2)t + e−(µ+η2)tpθ
∫ t

0
E(t)e(µ+η2)tdt ≥ 0, (5)

IA(t) = IA(0)e−P3t + e−P3t (1 − p)θ
∫ t

0
E(t)eP3tdt ≥ 0, (6)

Q (t) = Q (0)e−(µ+ρ1+ρ2)t + e−(µ+ρ1+ρ2)tη1

∫ t

0
E(t)e(µ+δ2+γ2)tdt ≥ 0, (7)

H(t) = H(0)e−P4t + e−P4t
∫ t

0
[η2I(t) + ρ1Q (t)] eP4tdt ≥ 0, (8)

R(t) = R(0)e−µt
+ e−µt

∫ t

0
[δ1H(t) + δ2IA(t)] eµtdt ≥ 0, (9)

where P2 = µ + θ + η1, P3 = µ + δ2 + γ2 and P4 = µ + δ1 + γ1. Therefore, we can say that S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,
IA(0) ≥ 0, Q (0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0 for all t > 0. This completes the proof.

4.2. Boundedness of the system

Theorem 2. All solutions of system (1) that initiate in ℜ
7
+

are bounded uniformly in the region χ = {(S, E, I, IA,Q ,H, R) ∈

ℜ
7
+

: 0 ≤ S + E + I + IA + Q + H + R ≤ Ω/µ}.

Proof. Let (S(t), E(t), I(t), IA(t),Q (t),H(t), R(t)) be any solution of system (1) with any given non-negative initial
condition. Also, let N(0) = S(0) + E(0) + I(0) + IA(0) + Q (0) + H(0) + R(0) > 0. Then

dN
dt

= Ω − µ(S + E + I + IA + Q + H + R) − γ1H − γ2IA

≤ Ω − µN. (10)

hus, by the differential inequality theory [65], we obtain

N ≤ N(0)e−µt
+

∫ t

e−µ(t−x)Ωdx,

0

7
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N ≤ N(0)e−µt
+

Ω

µ

(
1 − e−µt) .

It thus follows that, for t → ∞,

0 ≤ N(t) ≤
Ω

µ
. (11)

his implies that, χ is positively invariant so that all solutions of (1) with initial conditions in ℜ
7
+

are confined in χ .

Furthermore, the interacting functions fi(S, E, I, IA,Q ,H, R), i = 1 − 7 of the system (1) are continuous and have
continuous partial derivatives on ℜ

7
+
. Hence, they are Lipschitzian on ℜ

7
+
. Additionally, Theorem 2 implies that the

solutions of Eq. (1) with initial conditions in ℜ
7
+

are uniformly bounded. Therefore, the initial value problem (IVP) is
well posed.

4.3. Basic reproduction number

Here, we employ the next generation matrix technique to determine the basic reproduction number R0, representing
the number of secondary infections caused by a single infected individual in the entire duration of their infection [59,60].
The classes which are directly involved in the spread of disease are E, I , IA and Q . Therefore, from the system equation (1),
we obtain the reduced system:

dE
dt

= β(1 − h)SI + αβ(1 − h)SIA − θE − η1E − µE,

dI
dt

= pθE − η2I − µI,

dIA
dt

= (1 − p)θE − δ2IA − γ2IA − µIA,

dQ
dt

= η1E − ρ1Q − ρ2Q − µQ . (12)

In compact matrix form, system (1) can be written as:
dX
dt

= F (X) − V (X) , (13)

here X = (E, I, IA,Q )T ,

F =

⎛⎜⎝ β(1 − h)SI + αβ(1 − h)SIA
0
0
0

⎞⎟⎠
and

V =

⎛⎜⎝ θE + η1E + µE
−pθE + η2I + µI

−(1 − p)θE + δ2IA + γ2IA + µIA
−η1E + ρ1Q + ρ2Q + µQ

⎞⎟⎠ .

n epidemiology, the matrix F is referred to as the matrix of new infections and V is the transfer matrix of individuals
etween compartments. The transition matrices V and F are obtained from the partial derivatives of V and F with respect
o E, I , IA and Q , evaluated at the disease-free equilibrium X0 = (Ω/µ, 0, 0, 0)T .

F =

⎛⎜⎝ 0 Ω
µ

β(1 − h) Ω
µ

αβ(1 − h) 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ ,

V =

⎛⎜⎝ µ + θ + η1 0 0 0
−pθ µ + η2 0 0

−(1 − p)θ 0 µ + δ2 + γ2 0
−η1 0 0 µ + ρ1 + ρ2

⎞⎟⎠ .

We define the next generation matrix by FV−1, where the reproduction number R0 is given by the spectral radius of
FV−1 [60].

R0 = ρ(FV−1) =
(1 − h)βθΩ

[
p

+
(1 − p)α

]
. (14)
µ(µ + θ + η1) µ + η2 µ + δ2 + γ2

8
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The reproduction number R0 obtained for the model is the sum of two other reproduction numbers RA
0 and RB

0, where

RA
0 =

(1 − h)βθΩp
µ(µ + θ + η1)(µ + η2)

,

RB
0 =

(1 − h)βθΩ(1 − p)α
µ(µ + θ + η1)(µ + δ2 + γ2)

. (15)

A
0 represents the number of secondary infections caused by an infected individual during their time spent in the infected
opulation. It is a measure of the number of the (1− h)Ω/µ susceptible population that are infected by θp people in the

infected group with a bilinear transmission rate β , with 1/(µ + η2) being the time an infected individual remains in the
infected group and 1/(µ+θ +η1) being the time an individual remains in the exposed group. RB

0 represents the number of
secondary infections because of an asymptomatic individual during their time spent in the asymptotic group. It represents
the number of the (1 − h)Ω/µ susceptible population that are infected by (1 − p)θ people in the asymptomatic group
with an enhanced transmission rate αβ with 1/(µ + δ2 + γ2) being the time an individual remains in the asymptomatic
roup.

.4. Equilibria of the system

The equilibrium points of the model system (1) are obtained by setting the interacting functions fi(S, E, I, IA,Q , R), i =

− 7 = 0. The disease-free equilibrium is given by X0(Ω/µ, 0, 0, 0, 0, 0, 0), while the endemic equilibrium is given by
X1(S∗, E∗, I∗, I∗A ,Q

∗,H∗, R∗), where

S∗
=

Ω

µR0
, E∗

=
Ω(R0 − 1)

R0 [(µ + θ + η1) − ∆1]
,

I∗ =
pθ

µ + η2
E∗, I∗A =

(1 − p)θ
µ + δ2 + γ2

E∗,

Q ∗
=

η1

µ + ρ1 + ρ2
E∗, H∗

=
1

µ + δ1 + γ1
∆2E∗,

R∗
=

1
µ

[
δ1

µ + δ1 + γ1
∆2 +

δ2(1 − p)θ
µ + δ2 + γ2

]
E∗

;

ith ∆1 = ρ2η1/(µ + ρ1 + ρ2) and ∆2 =

(
η2pθ
µ+η2

+
ρ1η1

µ+ρ1+ρ2

)
. We find that the disease-free equilibrium X0 always exists,

hereas, the endemic equilibrium X1 is only feasible if R0 > 1 and (µ + θ + η1) > ∆1.

4.5. Local stability analysis

Here, we discuss the local asymptotic stability criteria of the equilibria of system (1) by evaluating the Jacobian or
community matrix and the resulting characteristic equation. We then examine the signs of the eigenvalues based on the
Routh–Hurwitz conditions and/or Descartes rule of sign. It is easy to show that the Jacobian of system (1) is given as:

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∆2 − µ 0 ∆3 ∆4 ρ2 0 0
∆2 ∆5 −∆3 −∆4 0 0 0
0 pθ −µ − η2 0 0 0 0
0 (1 − p)θ 0 ∆6 0 0 0
0 η1 0 0 ∆7 0 0
0 0 η2 0 ρ1 ∆8 0
0 0 0 δ2 0 δ1 −µ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

here ∆2 = (1 − h)βI + (1 − h)αβIA, ∆3 = −(1 − h)βS, ∆4 = −(1 − h)αβS, ∆5 = −µ − θ − η1, ∆6 = −µ − δ2 − γ2,
7 = −µ − ρ1 − ρ2 and ∆8 = −µ − δ1 − γ1.

heorem 3. The disease-free equilibrium X0 (Ω/µ, 0, 0, 0, 0, 0, 0) is locally asymptotically stable if R0 < 1 and unstable if
0 > 1.

roof. The Jacobian matrix of system (1) evaluated at the disease-free equilibrium, X0 is given by

JX0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1 0 ω2 ω3 ω4 0 0
0 ω5 −ω2 −ω3 0 0 0
0 ω6 ω7 0 0 0 0
0 ω8 0 ω9 0 0 0
0 ω10 0 0 ω11 0 0
0 0 ω12 0 ω13 ω14 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)
0 0 0 ω15 0 ω16 ω17

9
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where, ω1 = −µ, ω2 = −(1 − h)βΩ/µ, ω3 = −(1 − h)αβΩ/µ, ω4 = ρ2, ω5 = −µ − θ − η1, ω6 = pθ , ω7 = −µ − η2,
ω8 = (1 − p)θ , ω9 = −µ − δ2 − γ2, ω10 = η1, ω11 = −µ − ρ1 − ρ2, ω12 = η2, ω13 = ρ1, ω14 = −µ − δ1 − γ1, ω15 = δ2,
ω16 = δ1 and ω17 = −µ. The characteristic equation of model system (1) evaluated at the disease free equilibrium point,
X0, is given by

(λ − ω1)(λ − ω11)(λ − ω14)(λ − ω17)(λ3
+ Aλ2

+ Bλ + C) = 0, (18)

where, A = −ω5 − ω7 − ω9, B = ω2ω6 + ω5ω7 + ω3ω8 + ω5ω9 + ω7ω9 and C = −ω3ω7ω8 − ω2ω6ω9 − ω5ω7ω9. It is clear
from Eq. (18) that the four eigenvalues, ω1, ω11, ω14 and ω17 have negative values and the remaining eigenvalues can be
easily obtained by finding the roots of the cubic polynomial in Eq. (18). Applying the Routh–Hurwitz criteria on the cubic
polynomial in (18) requires that A > 0, C > 0 and AB > C for the other three eigenvalues to be negative or have negative
real parts.

A = −ω5 − ω7 − ω9 = 3µ + θ + η1 + η2 + δ2 + γ2 > 0,
C = −ω3ω7ω8 − ω2ω6ω9 − ω5ω7ω9

= (µ + θ + η1)(µ + η2)(µ + δ2 + γ2)(1 − R0),

AB = (−ω5 − ω7 − ω9)(ω2ω6 + ω5ω7 + ω3ω8 + ω5ω9 + ω7ω9)
= (µ + η2)2(µ + δ2 + γ2) + (µ + η2)(µ + δ2 + γ2)2

+ (µ + θ + η1)(µ + η2)(µ + δ2 + γ2)
+ (µ + θ + η1)2(µ + η2)(1 − RA

0)
+ (µ + η2)2(µ + θ + η1)(1 − RA

0)
+ (µ + θ + η1)(µ + η2)(µ + δ2 + γ2)(1 − RA

0)
+ (µ + θ + η1)2(µ + δ2 + γ2)(1 − RB

0)
+ (µ + θ + η1)(µ + η2)(µ + δ2 + γ2)(1 − RB

0)
+ (µ + θ + η1)(µ + δ2 + γ2)2(1 − RB

0) > C .

Hence, the Routh–Hurwitz criterion is satisfied if, R0 < 1 and we may conclude that the COVID-19 model (1) is locally
asymptotically stable at the free equilibrium point, X0.

Theorem 4. The disease-endemic equilibrium X1(S∗, E∗, I∗, I∗A ,Q
∗,H∗, R∗) is locally asymptotically stable, if R0 > 1 and

δ2 + γ2 − η2 > 0 and unstable otherwise.

Proof. The Jacobian matrix of system (1) evaluated at the endemic equilibrium, X1 is given by

JX1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1 0 ω2 ω3 ω4 0 0
ω5 ω6 −ω2 −ω3 0 0 0
0 ω7 ω8 0 0 0 0
0 ω9 0 ω10 0 0 0
0 ω11 0 0 ω12 0 0
0 0 ω13 0 ω14 ω15 0
0 0 0 ω16 0 ω17 ω18

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (19)

here,

ω1 = −µ(R0 − 1)
(

ω6ω12

ω6ω12 − ω4ω11

)
− µ, ω2 = −(1 − h)βΩ/(µR0),

ω3 = −(1 − h)αβΩ/(µR0), ω4 = ρ2, ω5 = µ(R0 − 1)
(

ω6ω12

ω6ω12 − ω4ω11

)
,

ω6 = −µ − θ − η1, ω7 = pθ, ω8 = −µ − η2, ω9 = (1 − p)θ,

ω10 = −µ − δ2 − γ2, ω11 = η1, ω12 = −µ − ρ1 − ρ2, ω13 = η2,

ω14 = ρ1, ω15 = −µ − δ1 − γ1, ω16 = δ2, ω17 = δ1, and ω18 = −µ.

The characteristic equation of system (1) evaluated at the disease-endemic equilibrium, X1, is given by

(λ − ω15)(λ − ω18)(a5λ5
+ a4λ4

+ a3λ3
+ a2λ2

+ a1λ + a0) = 0, (20)

where

a0 = ω5ω8ω10(−ω4ω11 + ω6ω12),
a = −ω ω ω ω + ω ω ω + (ω + ω )(−ω ω + ω ω )
1 5 ( 8 10 12 6 8 10 8 10 4 11 6 12 )

10
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R

C

T

+
ω12

ω8
(ω8 + ω13)

(
ω2ω7(ω8 − ω10) + ω2

8(ω6 + ω10)
)
,

a2 = −ω8(ω6 + ω10) (ω8 + ω13) − ω12 (ω8 + ω13) (ω6 + ω8 + ω10)
− ω8ω12(ω6 + ω10) + ω5 (ω8ω10 + (ω6 + ω12)(ω8 + ω10))

+ ω5(−ω4ω11 + ω6ω12) −
ω2ω7

ω8
(ω8 − ω10) (ω8 + ω12 + ω13) ,

a3 = ω2
8 + ω10ω12 − ω5(ω6 + ω8 + ω10 + ω12) + ω6(2ω8 + ω12 + ω13)

+ (ω8 + ω13) (ω10 + ω12) + ω8(ω10 + ω12 + ω13) +
ω2ω7

ω8
(ω8 − ω10),

a4 = −ω1 − ω6 − ω8 − ω10 − ω12 > 0,
a5 = 1 > 0.

It is clear from Eq. (20) that the two eigenvalues, ω15 and ω18 are negative, and that the remaining five eigenvalues are
roots of the quintic polynomial in (20). Using R0 > 1, ω8 − ω10 = δ2 + γ2 − η2 > 0 and −ω4ω11 + ω6ω12 > 0 guaranteed
by the feasibility condition (µ+θ +η1) > ∆1 of the endemic equilibrium, we observe that ai, i = 1−5 > 0. By employing
the Descartes’ rule of signs, we find that the number of positive eigenvalues of the quintic polynomial given in Eq. (20)
is equal to the number of sign-changes from a5 to a1, which equals zero. Hence, the system (1) is locally asymptotically
stable if R0 > 1 and δ2 + γ2 − η2 > 0.

4.6. Global stability analysis

Theorem 5. The disease-free equilibrium X0 (Ω/µ, 0, 0, 0, 0, 0, 0) is globally asymptotically stable if R0 < 1 and unstable if
R0 > 1.

Proof. Consider the Lyapunov function L(E, I) = κ1E + κ2I , where κ1 and κ2 are non-negative parameters. It is easy to
see that L(E, I) ∈ C1. Also, LX0 (E, I) = 0 and it is positive definite ∀ (S, E, I, IA,Q ,H, R) ∈ ℜ

7
+
.

dL
dt

= κ1Ė + κ2 İ. (21)

eplacing Ė and İ , from system (1) into Eq. (21) yields

dL
dt

= κ1β(1 − h)SI + κ2αβ(1 − h)SIA − κ2(µ + η2)I

−(κ1(µ + θ + η1) − κ2pθ )E. (22)

hoosing κ1 = pθ , κ2 = (µ + θ + η1) and plugging S = Ω/µ and IA = 0, we have

dL
dt

=

[
β(1 − h)

Ω

µ
pθ − (µ + η2)(µ + θ + η1)

]
I

= (µ + η2)(µ + θ + η1)(RA
0 − 1)I. (23)

Since RA
0 < 1 follows from R0 < 1, therefore, it is clear that dL/dt < 0, when R0 < 1 and also dL/dt = 0, if I = 0. Hence,

by LaSalle’s Invariance principle [66,67], the disease-free equilibrium X0 is globally asymptotically stable.

Theorem 6. If R0 > 1, then there exist a disease-endemic equilibrium X1 and it is globally asymptotically stable in the interior
of χ .

Proof. Given that R0 > 1, then the existence and local asymptotic stability of the disease-endemic equilibrium is
guaranteed. Consider the Lyapunov function

L(E, I, IA,Q ,H) = E − E∗
− E∗ ln

(
E
E∗

)
+ I − I∗ − I∗ ln

(
I
I∗

)
+ IA − I∗A − I∗A ln

(
IA
I∗A

)
+ Q − Q ∗

− Q ∗ ln
(

Q
Q ∗

)
+H − H∗

− H∗ ln
(

H
H∗

)
. (24)

he time derivative of L is given by

L̇ =

(
1 −

E∗
)
Ė +

(
1 −

I∗
)
İ +

(
1 −

I∗A
)
İA
E I IA

11
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H

T

S

I

T
p

+

(
1 −

Q ∗

Q

)
Q̇ +

(
1 −

H∗

H

)
Ḣ

=

(
1 −

E∗

E

)
[β(1 − h)SI + αβ(1 − h)SIA − (µ + θ + η1)E]

+

(
1 −

I∗

I

)
[pθE − (µ + η2)I]

+

(
1 −

I∗A
IA

)
[(1 − p)θE − (µ + γ2 + δ2)IA]

+

(
1 −

Q ∗

Q

)
[η1E − (µ + ρ1 + ρ2)Q ]

+

(
1 −

H∗

H

)
[η2I + ρ1Q − (µ + γ1 + δ1)H] . (25)

owever, at the endemic state, we have

β(1 − h)S∗I∗ + αβ(1 − h)S∗I∗A = (µ + θ + η1)E∗, pθE∗
= (µ + η2)I∗

(1 − p)θE∗
= (µ + γ2 + δ2)I∗A , η1E∗

= (µ + ρ1 + ρ2)Q ∗,

η2I∗ + ρ1Q ∗
= (µ + γ1 + δ1)H∗. (26)

hen using Eq. (26) in Eq. (25), we have

L̇ = β(1 − h)SI
(
1 −

E∗

E

)
+ β(1 − h)S∗I∗

(
1 −

E
E∗

)
+ αβ(1 − h)SIA

(
1 −

E∗

E

)
+ αβ(1 − h)S∗I∗A

(
1 −

E
E∗

)
+ pθE

(
1 −

I∗

I

)
+ pθE∗

(
1 −

I
I∗

)
+ (1 − p)θE

(
1 −

I∗A
IA

)
+ (1 − p)θE∗

(
1 −

IA
I∗A

)
+ η1E

(
1 −

Q ∗

Q

)
+ η1E∗

(
1 −

Q
Q ∗

)
+ η2I

(
1 −

H∗

H

)
+ η2I∗

(
1 −

H
H∗

)
+ ρ1Q

(
1 −

H∗

H

)
+ ρ1Q ∗

(
1 −

H
H∗

)
. (27)

ince E ≤ E∗, I ≤ I∗, IA ≤ I∗A , Q ≤ Q ∗ and H ≤ H∗, then Eq. (27) becomes

L̇ ≤ β(1 − h)S∗I∗
(
2 −

E∗

E
−

E
E∗

)
+ αβ(1 − h)S∗I∗A

(
2 −

E∗

E
−

E
E∗

)
+ pθE∗

(
2 −

I∗

I
−

I
I∗

)
+ (1 − p)θE∗

(
2 −

I∗A
IA

−
IA
I∗A

)
+ η1E∗

(
2 −

Q ∗

Q
−

Q
Q ∗

)
+ η2I∗

(
2 −

H∗

H
−

H
H∗

)
+ ρ1Q ∗

(
2 −

H∗

H
−

H
H∗

)
. (28)

t follows from arithmetic–geometric inequality that(
2 −

E∗

E
−

E
E∗

)
≤ 0,

(
2 −

I∗

I
−

I
I∗

)
≤ 0,

(
2 −

I∗A
IA

−
IA
I∗A

)
≤ 0,(

2 −
Q ∗

Q
−

Q
Q ∗

)
≤ 0,

(
2 −

H∗

H
−

H
H∗

)
≤ 0. (29)

herefore, L̇ ≤ 0 and also L̇ = 0, only if E = E∗, I = I∗, IA = I∗A , Q = Q ∗ and H = H∗. Hence, by LaSalle’s Invariance
rinciple [66,67], the endemic equilibrium X1 is globally asymptotically stable.
12
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Table 4
Parameters used for numerical simulation.
Parameters South Africa Egypt Nigeria Senegal Ethiopia Kenya Status

L.E. 63.857 71.825 54.332 67.665 66.240 66.342 [68]
N0 58, 558, 270 100, 388, 073 200, 963, 599 16, 296, 364 112, 078, 730 52, 573, 973 [68]
µ 4.290 × 10−5 3.814 × 10−5 5.040 × 10−5 4.049 × 10−5 4.136 × 10−5 4.130 × 10−5 (365L.E.)−1

Ω 2512.389 3829.249 10128.565 659.833 4635.643 2171.148 µN0

α 0.5 0.5 0.5 0.5 0.5 0.5 Assumed
h 0.4 0.4 0.3 0.3 0.3 0.3 Assumed
p 0.6 0.6 0.6 0.6 0.6 0.6 Assumed
δ1 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 1/14
δ2 0.143 0.143 0.143 0.143 0.143 0.143 1/7
ρ1 0.143 0.143 0.143 0.143 0.143 0.143 1/7
ρ2 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 1/14
γ1 0.02 0.039 0.021 0.014 0.016 0.027 Assumed
γ2 0.005 0.0098 0.005 0.004 0.004 0.007 Assumed

5. Numerical simulations

We now carry out numerical simulations to compare our proposed COVID-19 Africa model (1) to the data for
umulative number of confirmed infected cases obtained from the World Health Organization (WHO) [61] for South Africa,
gypt, Nigeria, Senegal, Ethiopia and Kenya. The starting point of our simulation will be a day before the index case was
ecorded in each country. The demographical parameters Ω and µ are estimated from the total population size (N0) and
life expectancy (L.E.) data obtained from the 2018 United Nations data bank [68]. For example, Nigeria has a life expectancy
of 54.332 years with population size estimate of 200, 963, 599. Hence, the average death rate, (µ), used for the simulation
will be 1/(54.332 × 365) = 5.04 × 10−5/day with constant population growth rate, Ω = µN0 = 10, 128.57. We assume
that the proportion of new infections that are symptomatic, (p), is 60% and the portion of the susceptible population taking
precautionary measures, (h), is 30% for all the countries except 40% used for South Africa and Egypt [69,70]. The relative
infectiousness of the asymptomatic class, (α), is set to 0.5 [40,71]. It is assumed that individuals in quarantine, either
develop symptoms after an average of 7 days and are moved to isolation/hospitalization at a rate ρ1 = (1/7) = 0.143/day
or are released from quarantine, after an average of 14 days without developing symptoms, into the susceptible population
at a rate ρ2 = (1/14) = 0.0714/day. The average remission time is set to 14 days and 7 days for individuals in the
hospitalized and asymptomatic classes respectively. Hence, the recovery rates δ1 = 0.0714/day and δ2 = 0.143/day were
used in the model simulations. The COVID-19-induced death rates (γ1, γ2) are estimated from the percentage of case
fatalities recorded. The remaining parameters, the effective disease transmission rate (β), infection rate (θ ), quarantine
rate of exposed individuals (η1) and diagnosis/case detection rate (η2) are obtained from fitting the model to the data
using the NonlinearModelFit function in Mathematica. Table 4 gives the values of the parameters used in the simulations.
The following values of the initial conditions were also used for all the simulated countries: S(0) = N0, E(0) = 0, I(0) = 1,
IA(0) = 0, Q (0) = 0, H(0) = 0 and R(0) = 0. Moreover, the simulations and parameter estimations were performed such
that new initial conditions and new values of fitting parameters were obtained whenever the percentage daily increase
in cases was more than 30%. This approach divided the time evolution of the pandemic for the cumulative number of
confirmed infected cases into different regimes or intervals, which we refer to as phases. (Note that this definition of
phase is quite distinct from an interval of constant conditions determined by e.g. a particular ‘‘Tier’’ or level of lockdown
restrictions as used in the UK.) South Africa, Egypt, Nigeria and Kenya all have two phases of the infection, and Senegal has
three phases, while Ethiopia has only one phase of the infection. Table 5 gives the estimated values of the parameters β , θ ,
η1 and η2, as well as the calculated reproduction number R0 for the different phases of the infection for all the countries.
Fig. 4 gives the results of the numerical simulations for the different phases of the infection for all the countries. From
Fig. 4, we observe that our model (1) was well-fitted to the actual data for cumulative number of confirmed infected cases
for all the countries, with values of R0 between 1.374 and 9.179 and R0 highest during the first phase of the infection for
all the countries. The observed decrease in the R0 values beyond the first phase may be due to the impact of the strict
lockdown measure and other preventive policies enforced by the authorities.

6. Elasticity and sensitivity analysis of R0

Here, we analyse the elasticity and sensitivity of the reproduction number, R0. Sensitivity analysis is a well known
technique for identifying the critical parameters or inputs of a model and quantifying their importance relative to one
another [58]. For the purpose of elasticity and sensitivity analysis, we used data from Nigeria as a case study. The baseline
values and ranges of the system parameters used here are given in Table 6.

In order to perform the elasticity analysis of R0, we first calculated the normalized forward sensitivity index. In general,

the elasticity (normalized forward sensitivity index) of a variable, u, that depends differentiably on a parameter, ϕ, is given

13
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Table 5
Fitted parameters for different phases of the infection.
Countries Phase β θ η1 η2 R0

South Africa 1 7.663 × 10−8 0.226 0.487 0.072 8.290
2 5.268 × 10−8 0.0095 0.035 0.073 3.794

Egypt 1 1.426 × 10−8 0.243 0.073 0.079 5.906
2 4.385 × 10−9 0.246 0.059 0.083 1.825

Nigeria 1 5.201 × 10−9 0.264 0.058 0.153 3.162
2 2.509 × 10−9 0.438 0.124 0.165 1.374

Senegal
1 1.284 × 10−7 0.252 0.200 0.078 7.409
2 3.478 × 10−8 0.362 0.329 0.107 1.453
3 4.429 × 10−8 0.234 0.478 0.071 1.623

Ethiopia 1 1.016 × 10−8 0.258 0.538 0.074 2.452
2 2.121 × 10−8 0.130 0.350 0.287 1.559

Kenya 1 4.249 × 10−8 0.240 0.106 0.084 9.179
2 9.998 × 10−9 0.064 0.028 0.074 2.417

Fig. 4. Cumulative number of confirmed infected cases by COVID-19 as a function of time for South Africa, Egypt, Nigeria, Senegal, Ethiopia and
Kenya. The black dots corresponds to the real data while the blue continuous line represents the simulation from model (1).
14
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Table 6
Baseline values and ranges of the system parameters.
Parameter Baseline value Range

Ω 10128.565 day−1 [10000, 10200] day−1

µ 5.040 × 10−5 day−1 [
4.8 × 10−5, 5.2 × 10−5

]
day−1

β 2.509 × 10−9 day−1 [
1 × 10−9, 4 × 10−9

]
day−1

α 0.5 [0.3, 0.7]
h 0.3 [0.2, 0.5]
θ 0.438 day−1 [0.2, 0.6] day−1

p 0.6 [0.4, 0.75]
η1 0.124 day−1 [0.05, 0.2] day−1

η2 0.165 day−1 [0.08, 0.25] day−1

δ2 0.143 day−1 [0.05, 0.2] day−1

γ2 0.005 day−1 [0.0035, 0.008] day−1

as [72]:

ϖ u
ϕ =

∂u
∂ϕ

×
ϕ

u
. (30)

negative (or positive) sensitivity index indicates a decrease (or an increase) in the value of the parameter ϕ resulting
n a decrease (or an increase) in the value of u. For, R0, we obtain the following:

ϖ
R0
Ω = 1, ϖR0

µ = −1 −
µ

µ + θ + η1
−

µ

(
(1−p)α

(µ+δ2+γ2)2
+

p
(µ+η2)2

)
(1−p)α

µ+δ2+γ2
+

p
µ+η2

, ϖ
R0
β = 1,

ϖR0
α =

α(1 − p)(µ + η2)
α(1 − p)(µ + η2) + p(µ + δ2 + γ2)

, ϖ
R0
h =

h
h − 1

, ϖ
R0
θ =

µ + η1

µ + θ + η1
.

ϖ
R0
p =

−
pα

µ+δ2+γ2
+

p
µ+η2

(1−p)α
µ+δ2+γ2

+
p

µ+η2

, ϖR0
η1

=
−η1

µ + θ + η1
, ϖR0

η2
=

−pη2

(µ + η2)2
(

(1−p)α
µ+δ2+γ2

+
p

µ+η2

) ,

ϖ
R0
δ2

=
−(1 − p)αδ2

(µ + δ2 + γ2)2
(

(1−p)α
µ+δ2+γ2

+
p

µ+η2

) , ϖR0
γ2

=
−(1 − p)αγ2

(µ + δ2 + γ2)2
(

(1−p)α
µ+δ2+γ2

+
p

µ+η2

) .

he elasticity or sensitivity index shows the influence of change in one parameter while keeping all other parameters
onstant. Note that the sensitivity indices of Ω and β do not depend on any parameter value. Interestingly, the
eproduction number R0 does not depend on the recovery rate of the hospitalized individuals (δ1), or on the isolation
ate of quarantined individuals (ρ1), or on the transition rate from quarantine class to susceptible class after quarantine
ρ2), or on the COVID-19-induced death rate of the hospitalized cases (γ1). We proceed to evaluate the above sensitivity
ndices using the baseline parameter values in Table 6. A plot showing the sensitivity indices for R0 with respect to its
onstituent parameters is presented in Fig. 5, from which we can state that R0 increases whenever Ω , β α, θ , or p increase.
n the other hand, whenever µ, h, η1, η2, δ2 or γ2 increase, then R0 decreases. For example, ϖR0

α = 0.271 implies that
ncreasing α by 10% will increase R0 by 2.71%. Hence, a similar interpretation can be inferred for the remaining parameters
n Table 6. Following the elasticity analysis, the most positive sensitivity index was obtained for β with a 10% increase in β

leading to the same proportional increase in R0. Note that the same value of positive sensitivity index as β was obtained
for Ω . However, Ω is a demographic variable that cannot be changed in the field. The controllable parameter with the
most negative sensitivity index was η2. With a 10% increase in η2, a decrease of 7.29% in R0 was found. We observe that
the most significant parameters are the effective disease transmission rate (β), the disease diagnosis or case detection
rate (η2), and the proportion of susceptible individuals taking precautions (h). Therefore, we can conclude that efforts at
controlling the disease should concentrate on decreasing the transmission rate through contact reduction via lockdown
and social distancing measures. In addition, h can be increased by encouraging social campaigns aimed at increasing the
number of individuals taking precautionary measures such as regular hand washing with soap and use of sanitizers, use
of face mask and other PPEs.

For the sensitivity analysis of the reproduction number, R0, the Latin Hypercube Sampling (LHS) technique [73] was
implemented for the parameters of the model. The correlation between R0 and the input parameter values obtained
rom 1000 simulations was quantified using Partial Rank Correlation Coefficients (PRCC). The sensitivity analysis results
f R0, shown in Fig. 6 demonstrate that the parameters with the greatest influence on R0 are β , η2, h, δ2, and θ in
rder of decreasing sensitivity. Clearly, the sensitivity analysis results are similar to those of the elasticity analysis, as
he parameters β , η2, and h, identified via sensitivity indices as being the most significant parameters, are also the most
ensitive parameters. It is noteworthy that, though the demographic parameters, Ω and µ had sensitivity indices of 1 and
15
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Fig. 5. Plot showing sensitivity indices of R0 as a function of its constituent parameters.

Fig. 6. Plot of partial rank correlation coefficient showing the influence of input parameters on R0 .

−1, respectively, the results of the sensitivity analysis shows that they have insignificant influence on R0 due to their
very low PRCC values.

Figs. 7 and 8 provide contour plots of the reproduction number R0 as a function of the parameter pairs (β, η2) and
(θ, h), respectively. From Fig. 7, we observe that for an effective disease transmission rate, β < 6.839×10−10, R0 is always
less than 1, indicating that, eventually the disease will die out in the population regardless of the value of the diagnosic or
case detection rate (η2). For increase in the value of β , R0 can be kept under 1 by also increasing η2. If β > 1.368× 10−9

and η2 < 0.187/day, then R0 > 2. Also, if β > 2.052 × 10−9 and η2 < 0.109/day, then R0 > 3. Fig. 8 shows that if the
disease infection rate, θ is less than 0.082/day, then R0 is always less than 1 regardless of the proportion of susceptible
individuals taking precautions (h). Another remarkable observation from Fig. 8 is that, if at least 55.29% of the susceptible
population adheres to the prescribed precautions, such as regular hand washing with the use of soap, use of sanitizers
and face masks, then the reproduction number R0 can be kept below unity regardless of the value of the disease infection
rate. This result is in agreement with previous studies carried out for Lagos, Nigeria, where at least 55% of the population
effectively making use of face masks while in public was recommended for the reproduction number of the disease to be
brought below 1 [40]. Moreover, if less than 10.58% of the susceptible population take the prescribed precautions with a
disease infection rate greater than 0.483, then R0 > 2.

Fig. 9 shows the influence of the variation in the model parameters on the progression of the number of active cases.
The plots in Fig. 9 were obtained by simulating the model (1) numerically using different values of the system parameters,
β , η2, θ and h, while other parameters were kept constant. We observe that variations in the parameters have significant
influence on the maximum of the infection and the number of days taken to reach this maximum. Notably, for an increase
in the values of β and θ , there is a corresponding increase in the maximum infection in addition to this value being attained
on a later day. For infection rates of 0.4, 0.5, 0.6 and 0.7, maxima of about 850,000, 750,000, 610,000 and 460,000 may
be reached after about 280, 310, 350 and 420 days, respectively. For diagnostic or case detection rates of 0.10, 0.13, 0.16
16
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Fig. 7. Contour plot of R0 as a function of β and η2 .

Fig. 8. Contour plot of R0 as a function of θ and h.

nd 0.18, maxima of about 1.5 million, 1 million, 590,000 and 370,000 may be reached after about 220, 280, 370 and
60 days, respectively. If 15% of the susceptible population takes precautions, then the projection in Fig. 9 shows that the
umber of active cases may attain about 1.2 million by around the 240th day of the infection. Alternatively, with 35% of
he population taking precautionary measures, then the number of active cases may reach around 320,000 by around the
10th day of the infection.

. Fractional model with Atangana–Balenau derivative

Fractional models with the Atangana–Balenau fractional derivative provide more efficient results than the ordinary
erivative models [46,47,51,57,74–78]. We begin here by defining the Atangana–Balenau fractional derivative and its
ntegral.
17
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Fig. 9. Figure showing the effect of the model parameters (β , η2 , θ , h) on the number of active cases.

efinition 7.1. Let g ∈ H1(a1, a2), a2 > a1, σ ∈ [0, 1],. The Atangana–Balenau fractional derivative is then defined [46]
s:

ABC
a1 Dσ

t g(t) =
B(σ )
1 − σ

∫ t

a1

g ′(ζ )Eσ

[
−σ

(t − ζ )σ

1 − σ

]
dζ , (31)

nd the associated fractional integral of the Atangana–Balenau derivative is defined as [46]:

ABC
a1 Iσt g(t) =

1 − σ

B(σ )
g(t) +

σ

B(σ )Γ (σ )

∫ t

a1

g(ζ )(t − ζ )σ−1dζ , (32)

where B(σ ) is the normalization function satisfying B(0) = B(1) = 1, and Eσ (.) is the Mittag-Leffer function with one
parameter.

Definition 7.2. The Mittag-Leffler function with one parameter is defined [46] as

Eσ (z) =

∞∑
k=0

zk

Γ (σk + 1)
, σ > 0, z ∈ C. (33)

We generalize the model (1) by applying the Atangana–Baleanu derivative and thus obtain the following fractional
COVID-19 model for Africa:

ABC
0 Dσ

t S = Ω − β(1 − h)SI − αβ(1 − h)SIA + ρ2Q − µS = f1(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t E = β(1 − h)SI + αβ(1 − h)SIA − θE − η1E − µE = f2(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t I = pθE − η2I − µI = f3(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t IA = (1 − p)θE − δ2IA − γ2IA − µIA = f4(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t Q = η1E − ρ1Q − ρ2Q − µQ = f5(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t H = η2I − δ1H − γ1H + ρ1Q − µH = f6(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t R = δ1H + δ2IA − µR = f7(S, E, I, IA,Q ,H, R), (34)

here Dσ
t is the fractional derivative and σ represents the fractional order parameter.

The numerical results for the fractional model (34) were obtained by following the procedure described in the
Appendix in which the modified Adams–Bashforth scheme developed by Toufik and Atangana [78] was adopted. Readers
re referred to some very recent applications of the modified Adams–Bashforth scheme [47–49,79]. Fig. 10 shows the
ependence of the number of active cases, infectious and symptomatic class, asymptomatic class and the hospitalized
18
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Fig. 10. The dynamics of the active cases, infectious and symptomatic class I(t), asymptomatic class IA(t) and hospitalized class H(t) of the fractional
model (36) for different values of the order of the fractional derivative σ .

class from the fractional model (36) on the magnitude of the order of the fractional derivative, σ . Fig. 10 was obtained
y using the initial conditions S(0) = N0, E(0) = 0, I(0) = 1, IA(0) = 0, Q (0) = 0, H(0) = 0 and R(0) = 0 and performing
umerical simulation of the fractional model (36) using the modified Adams–Bashforth scheme (39)–(45) for σ = 1.0,
.95 and 0.9. The result shows that the magnitude of σ has a marked impact on the day the maximum is reached, with
right shift in the time at which this happens as σ decreases from 1.0. However, the order of the fractional derivative

σ ) has only an insignificant effect on the projected peak numbers of active cases. Specifically, for σ = 1.0, 0.95 and 0.9,
he peak numbers of active cases were approximately 590,000, 570,000, 550,000 by about the 370th, 440th and 540th
ay after the first case of the infection was recorded, respectively. Hence, the order of the fractional derivative (σ ) can be
sed as an effective delay variable for the peak of the infection.
The results of the numerical simulations showing the effect of order of the fractional derivative σ on the cumulative

umber of confirmed infected cases by COVID-19 for the different phases of the infection for all the countries is depicted
n Fig. 11.

The effective reproduction number Re(t), defined as the actual average number of secondary cases per primary case
t time t (for t > 0) is a useful time-varying threshold in epidemiology for measuring the trajectory and rate of spread
f the disease at any point in time during the course of the epidemic. The effective reproduction number for Eq. (1) is
iven by

Re(t) = R0

(
S(t)
N(t)

)
. (35)

enerally, the number of disease cases rises when Re(t) > 1, attains a peak when Re(t) = 1, and declines when Re(t) < 1.
or more details on the effective reproduction number, see Refs. [80–82]. Figs. 12 and 13 gives an illustration of the
ffective reproduction number for the selected countries for different values of the order of the fractional derivative σ . As
een in Figs. 12 and 13, the COVID-19 epidemic had an effective reproduction number that generally decreases with time
or the different phases of the infection for all the countries. Also, the effective reproduction number falls more rapidly
ith time for σ = 1.00 and least for σ = 0.95. This observation is consistent with Fig. 10 which shows that the peak
umbers of active cases was reached earliest for σ = 1.00.

. Conclusion

In this paper, a mathematical model for the novel coronavirus (COVID-19) disease which incorporates some non-
harmaceutical interventions was proposed and used to investigate the transmission dynamics in selected African
ountries, namely, South Africa, Egypt, Nigeria, Senegal, Ethiopia and Kenya. The model contains seven epidemiological
ompartments namely: Susceptible S(t), Exposed E(t), Infected I(t), Asymptomatic I (t), Quarantine Q (t), Hospitalized
A

19
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Fig. 11. Effect of order of the fractional derivative σ on the cumulative number of confirmed infected cases by COVID-19 as a function of time for
South Africa, Egypt, Nigeria, Senegal, Ethiopia and Kenya.

H(t) and Recovered R(t) and also takes into account some specific features of the COVID-19 epidemic such as quarantine,
isolation and asymptomatic infections. We obtained the critical points, identified the disease-free states and the endemic
states. The basic reproduction number, R0 was computed using the next generation matrix approach. Numerical
simulations to fit the proposed model to the actual data for cumulative number of confirmed infected cases was performed
for the different phases of the infection for all the countries, with values of R0 between 1.311 and 9.179 obtained.
s expected, we observe that the condition R0 < 1 is necessary for the stability (or instability) of the disease-free(or
ndemic state). A fractional version of the model was introduced using the Atangana–Baleanu derivative and numerical
imulations were performed for better understanding of the dependence of the dynamics of the disease on the order of
he fractional derivative, σ . The result shows that the magnitude of σ has a pronounced effect on the day the maximum is
eached with a right shift observed in the time taken for the maximum to be attained as σ decreases from 1.0. However,
he order of the fractional derivative has insignificant effect on the projected peak number of active cases. Hence, σ
an be used as an effective delay variable for the peak of the infection. Elasticity and sensitivity analyses show that the
ost significant parameters are the effective disease transmission rate (β), disease diagnosis or case detection rate (η2),
roportion of susceptible taking precautions (h) and the disease infection rate (θ ). If the disease infection rate, θ is less
han 0.082/day, then R0 is always less than 1 regardless of the proportion of susceptible taking precautions (h). Another
remarkable inference from the study is that, if at least 55.29% of the susceptible population take precautions such regular
hand washing with the use of soap, use of sanitizers and wearing of face masks, then, the reproduction number R0 can
be kept below 1 irrespective of the value of the disease infection rate. The most important practical conclusion is that
efforts to control the disease should concentrate on decreasing the transmission rate by contact reduction, via lockdown
and social distancing measures. In addition, h can be increased by encouraging social campaigns aimed at increasing the
number of individuals taking prescribed precautionary measures.
20
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Fig. 12. Evolution of the effective reproduction number Re(t) with time for South Africa, Egypt and Nigeria for different values of the order of the
ractional derivative σ .
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Fig. 13. Evolution of the effective reproduction number Re(t) with time for Ethiopia, Kenya and Senegal for different values of the order of the
ractional derivative σ .

ppendix. Numerical scheme

We now describe the numerical procedure used for solution of the fractional model (34) by adopting the modified
dams–Bashforth scheme developed by Toufik and Atangana [78]. Some recent applications of the modified Adams–
ashforth scheme, include [47–49,79]. Before applying the procedure in Toufik and Atangana [78], we write the fractional
OVID-19 model (34) in the following form:

ABC
0 Dσ

t S = f1(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t E = f2(S, E, I, IA,Q ,H, R),
ABCDσ I = f (S, E, I, I ,Q ,H, R),
0 t 3 A

22
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F

ABC
0 Dσ

t IA = f4(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t Q = f5(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t H = f6(S, E, I, IA,Q ,H, R),
ABC
0 Dσ

t R = f7(S, E, I, IA,Q ,H, R). (36)

ollowing the procedure in Toufik and Atangana [78], the fractional model can take the form:

S(t) − S(0) =
1 − σ

B(σ )
f1(t, S) +

σ

B(σ )Γ (σ )

∫ t

0
f1(t, S)(t − ζ )σ−1dζ ,

E(t) − E(0) =
1 − σ

B(σ )
f2(t, E) +

σ

B(σ )Γ (σ )

∫ t

0
f2(t, E)(t − ζ )σ−1dζ ,

I(t) − I(0) =
1 − σ

B(σ )
f3(t, I) +

σ

B(σ )Γ (σ )

∫ t

0
f3(t, I)(t − ζ )σ−1dζ ,

IA(t) − IA(0) =
1 − σ

B(σ )
f4(t, IA) +

σ

B(σ )Γ (σ )

∫ t

0
f4(t, IA)(t − ζ )σ−1dζ ,

Q (t) − Q (0) =
1 − σ

B(σ )
f5(t,Q ) +

σ

B(σ )Γ (σ )

∫ t

0
f5(t,Q )(t − ζ )σ−1dζ ,

H(t) − H(0) =
1 − σ

B(σ )
f6(t,H) +

σ

B(σ )Γ (σ )

∫ t

0
f6(t,H)(t − ζ )σ−1dζ ,

R(t) − R(0) =
1 − σ

B(σ )
f7(t, R) +

σ

B(σ )Γ (σ )

∫ t

0
f7(t, R)(t − ζ )σ−1dζ , (37)

Using t = tn+1, n = 0, 1, 2, . . ., in (37), we obtain:

S(tn+1) − S(t0) =
1 − σ

B(σ )
f1(tn, S)

+
σ

B(σ )Γ (σ )

n∑
k=0

∫ tk+1

tk

f1(t, S)(tk+1 − ζ )σ−1dζ ,

E(tn+1) − E(t0) =
1 − σ

B(σ )
f2(tn, E)

+
σ

B(σ )Γ (σ )

n∑
k=0

∫ tk+1

tk

f2(t, E)(tk+1 − ζ )σ−1dζ ,

I(tn+1) − I(t0) =
1 − σ

B(σ )
f3(tn, I)

+
σ

B(σ )Γ (σ )

n∑
k=0

∫ tk+1

tk

f3(t, I)(tk+1 − ζ )σ−1dζ ,

IA(tn+1) − IA(t0) =
1 − σ

B(σ )
f4(tn, IA)

+
σ

B(σ )Γ (σ )

n∑
k=0

∫ tk+1

tk

f4(t, IA)(tk+1 − ζ )σ−1dζ ,

Q (tn+1) − Q (t0) =
1 − σ

B(σ )
f5(tn,Q )

+
σ

B(σ )Γ (σ )

n∑
k=0

∫ tk+1

tk

f5(t,Q )(tk+1 − ζ )σ−1dζ ,

H(tn+1) − H(t0) =
1 − σ

B(σ )
f6(tn,H)

+
σ

B(σ )Γ (σ )

n∑
k=0

∫ tk+1

tk

f6(t,H)(tk+1 − ζ )σ−1dζ ,

R(tn+1) − R(t0) =
1 − σ

f7(tn, R)
B(σ )
23
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E
n

+
σ

B(σ )Γ (σ )

n∑
k=0

∫ tk+1

tk

f7(t, R)(tk+1 − ζ )σ−1dζ , (38)

mploying the two-step Lagrange-polynomial approximation for the integral in (38), we obtain the following the
umerical scheme for the fractional model (34):

S(tn+1) = S(t0) +
1 − σ

B(σ )
f1(tn, S)

+
σ

B(σ )
×

n∑
k=0

[
φσ f1(tk, S)
Γ (σ + 2)

((n + 1 − k)σ (n − k + 2 + σ )

− (n − k)σ (n − k + 2 + 2σ )) −
φσ f1(tk−1, S)
Γ (σ + 2)

×
(
(n + 1 − k)σ+1

− (n − k)σ (n − k + 1 + σ )
)]

, (39)

E(tn+1) = E(t0) +
1 − σ

B(σ )
f2(tn, E)

+
σ

B(σ )
×

n∑
k=0

[
φσ f2(tk, E)
Γ (σ + 2)

((n + 1 − k)σ (n − k + 2 + σ )

− (n − k)σ (n − k + 2 + 2σ )) −
φσ f2(tk−1, S)
Γ (σ + 2)

×
(
(n + 1 − k)σ+1

− (n − k)σ (n − k + 1 + σ )
)]

, (40)

I(tn+1) = I(t0) +
1 − σ

B(σ )
f3(tn, I)

+
σ

B(σ )
×

n∑
k=0

[
φσ f3(tk, I)
Γ (σ + 2)

((n + 1 − k)σ (n − k + 2 + σ )

− (n − k)σ (n − k + 2 + 2σ )) −
φσ f3(tk−1, I)
Γ (σ + 2)

×
(
(n + 1 − k)σ+1

− (n − k)σ (n − k + 1 + σ )
)]

, (41)

IA(tn+1) = IA(t0) +
1 − σ

B(σ )
f4(tn, IA)

+
σ

B(σ )
×

n∑
k=0

[
φσ f4(tk, IA)
Γ (σ + 2)

((n + 1 − k)σ (n − k + 2 + σ )

− (n − k)σ (n − k + 2 + 2σ )) −
φσ f4(tk−1, IA)

Γ (σ + 2)
×

(
(n + 1 − k)σ+1

− (n − k)σ (n − k + 1 + σ )
)]

, (42)

Q (tn+1) = Q (t0) +
1 − σ

B(σ )
f5(tn,Q )

+
σ

B(σ )
×

n∑
k=0

[
φσ f5(tk,Q )
Γ (σ + 2)

((n + 1 − k)σ (n − k + 2 + σ )

− (n − k)σ (n − k + 2 + 2σ )) −
φσ f5(tk−1,Q )

Γ (σ + 2)
×

(
(n + 1 − k)σ+1

− (n − k)σ (n − k + 1 + σ )
)]

, (43)

H(tn+1) = H(t0) +
1 − σ

B(σ )
f6(tn,H)

+
σ

B(σ )
×

n∑[
φσ f6(tk,H)
Γ (σ + 2)

((n + 1 − k)σ (n − k + 2 + σ )

k=0
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R

− (n − k)σ (n − k + 2 + 2σ )) −
φσ f6(tk−1,H)

Γ (σ + 2)
×

(
(n + 1 − k)σ+1

− (n − k)σ (n − k + 1 + σ )
)]

, (44)

R(tn+1) = R(t0) +
1 − σ

B(σ )
f7(tn, R)

+
σ

B(σ )
×

n∑
k=0

[
φσ f7(tk, R)
Γ (σ + 2)

((n + 1 − k)σ (n − k + 2 + σ )

− (n − k)σ (n − k + 2 + 2σ )) −
φσ f7(tk−1, R)
Γ (σ + 2)

×
(
(n + 1 − k)σ+1

− (n − k)σ (n − k + 1 + σ )
)]

, (45)

where φ = tn+1 − tn.
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